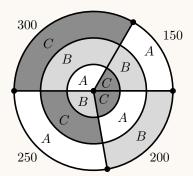
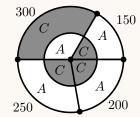
Exame final de Matemática Aplicada às Ciências Sociais (2023, 2.ª fase) Proposta de resolução

1. Aplicando o método descrito, temos:

- Número de votos necessário para obter maioria absoluta: $\frac{900}{2} + 1 = 451;$
- observando o número de votos em cada empregado, como primeira preferência, verifica-se que nenhum deles obtém a maioria absoluta (o empregado mais votado foi a Ana com 300 votos);
- o empregado com menor número de votos foi a Diana com 150 votos;
- reestruturando o diagrama, eliminando a Diana, podemos verificar que:
 - o observando o número de votos em cada empregado, como primeira preferência, verifica-se que nenhum deles obtém a maioria absoluta (o empregado mais votado foi o Carlos com 150+200=350 votos);
 - $\circ\,$ o empregado com menor número de votos foi a Bernardo com 200 votos;



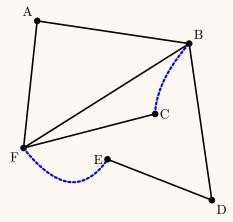
 \bullet reestruturando novamente o diagrama, eliminando o Bernardo, podemos verificar que o Carlos obtém a maioria absoluta com 150+250+200=600 votos;



Logo, as correspondências corretas são:

- $I \rightarrow a$)
- II \rightarrow c)
- III \rightarrow b)
- $IV \rightarrow b$)

2. A partir do grafo apresentado, analisando o grau de cada de cada vértice, temos:



Iniciar e terminar o circuito de manutenção numa mesma estação, percorrendo todos os troços, incluindo os novos, sem repetir nenhum deles, corresponde à definição de um circuito de Euler. Tal só será possível se todos os vértices tiverem grau par, o que não acontece neste caso, porque existem quatro vértices com grau ímpar: C e E (grau 1) e F e B (grau 3).

Assim, o número mínimo de troços pedonais a construir é 2, correspondendo a novas arestas no grafo que liguem os vértices de grau ímpar, para que passem a ter grau par e assim para que seja possível definir circuitos de Euler.

Resposta: Opção B

3. De acordo com a tabela e com a aplicação do algoritmo, obtemos a seguinte ordenação das arestas:

I - Aresta M - S, peso 2h30 (menor peso)

II - Aresta R - S, peso 2h40

III - Aresta A - M, peso 2h50

IV - Aresta A - V, peso 4h40

(não se considera a aresta M - V, porque três arestas se iriam encontrar no vértice M)

(não se considera a aresta S - V, porque três arestas se iriam encontrar no vértice S)

(não se considera a aresta R - V, porque formaria um percurso fechado que não incluia todos os vértices)

(não se considera a aresta A - S, porque três arestas se iriam encontrar no vértice A)

(não se considera a aresta M - R, porque três arestas se iriam encontrar no vértice M)

V - Aresta I - V - peso 14h50

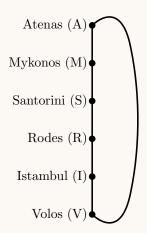
VI - Aresta I - R - peso 15h30

Desta forma, apresenta-se a seguir um grafo semelhante ao que poderá terá sido construído pela Luísa e um percurso que a Luísa poderá ter definido, com início e fim na cidade de Atenas:

 $Atenas \rightarrow Mykonos \rightarrow Santorini \rightarrow Rodes \rightarrow Istambul \rightarrow Volos \rightarrow Atenas$

(o mesmo percurso em sentido inverso também satisfaz as condições do enunciado).

Desta forma é possível verificar que a Luísa não pode visitar os locais pela mesma ordem seguida pelos pais.



- 4. Como o José atribui à parte com cogumelos o dobro do valor monetário que atribui à parte com azeitonas, o valor da *pizza* pode ser dividido em 3 terços (2 terços para a parte com cogumelos e 1 terço para a parte com azeitonas). Logo, o valor da *pizza* pode ser dividido em:
 - parte dos cogumelos (V_C): $\frac{2}{3} \times 42 = 28$ euros (correspondente a um setor de 180°)
 - parte das azeitonas (V_A) : $\frac{1}{3} \times 42 = 14$ euros (correspondente a um setor de 180°)

Assim, relacionado o valor monetário de cada uma das partes da porção P_1 como o valor total de cada uma das partes da pizza, temos:

• parte dos cogumelos:
$$\frac{V_C}{28} = \frac{135}{180} \Leftrightarrow V_C = \frac{135 \times 28}{180} \Leftrightarrow V_C = 21$$
 euros

• parte das azeitonas:
$$\frac{V_A}{14} = \frac{45}{180} \Leftrightarrow V_A = \frac{45 \times 14}{180} \Leftrightarrow V_A = 3,5$$
 euros

Desta forma, temos que e o valor monetário atribuído pelo José à porção P_1 , é:

$$V_C + V_A = 21 + 3.5 = 24.5$$
 euros

5. De acordo com os dados das tabelas 2 e 3, podemos determinar o valor total anual (sem desconto) a pagar pelos elementos do agregado familiar do Tiago:

Elemento do agregado familiar	Idade (em anos)	Prémios totais anuais (em euros)
Tiago	50 (Dos 46 aos 50)	531,08
Alice	44 (Dos 41 aos 45)	466,18
Beatriz	14 (Dos 11 aos 20)	241,48
Nuno	12 (Dos 11 aos 20)	241,48
Soma:		1480,22

De acordo com a tabela 4, o desconto a aplicar para um conjunto de 4 pessoas seguradas é 11%, pelo que o valor do desconto, é:

$$1480,22 \times 0,11 = 162,8242$$

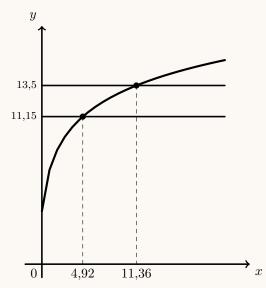
E assim, temos que o valor anual, em euros, que o mediador de seguros terá apresentado para o seguro de saúde de todo o agregado familiar do Tiago, com arredondamento às centésimas, é:

$$1480,22 - 162,8242 \approx 1317,40$$

6.

6.1. Representamos na calculadora gráfica os gráficos do saldo A da conta-corrente $(y=4+3\ln(2x+1))$ e das retas correspondente aos 11,15 e 13,5 milhões de euros (y=11,15 e y=13,5), numa janela compatível com o limite temporal do modelo, ou seja, $0 \le x \le 22$, que se encontram reproduzidos na figura ao lado.

Usando a função da calculadora para determinar valores aproximados das coordenadas do ponto de interseção do modelo com cada uma das retas, obtemos o valores arredondados (às centésimas) das abcissas dos pontos de interseção, ou seja, o valor correspondente ao tempos em que o saldo era $11,15 \ e 13,5 \ milhões de euros, ou seja, os pontos de coordenadas <math>(4,92\,;\,11,5) \ e (11,36\,;\,13,5)$.



Assim, o período de tempo em ocorreu o maior investimento em publicidade para promover o itinerário A, durou 11,36-4,92=6,44 anos a que correspondem 6 anos completos.

6.2. Relativamente ao valor do saldo A, temos que:

- no inicio do ano 200 era: $A(0) = 4 + 3\ln(2 \times 0 + 1) = 4$ milhões de euros;
- no final do primeiro ano, era: $A(1) = 4 + 3 \ln(2 \times 1 + 1) \approx 7,2958$ milhões de euros ;
- durante o primeiro ano registou um aumento de: $A(1)-A(0)\approx 7,2958-4\approx 3,2958$ milhões de euros

Assim, o aumento em percentagem, a registado no primeiro ano é:

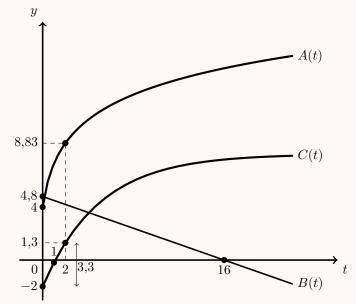
$$\frac{a}{3,2958} = \frac{100}{4} \iff a = \frac{100 \times 3,2958}{4} \iff a = 82,395 \implies a \approx 82\%$$

Resposta: Opção D

6.3. Representando na calculadora gráfica os gráficos dos três modelos, numa janela compatível com o limite temporal do modelo, ou seja, $0 \le x \le 22$, obtemos os gráficos reproduzidos na figura seguinte.

Da observação dos gráficos e usando as diferentes ferramentas da calculadora gráfica, podemos estabelecer as seguintes correspondências:

- (b) (1) o saldo B tem vindo a diminuir;
- (b) (2) o saldo B era o que tinha maior valor no inicio do ano 2000;
- (c) (3) o saldo C era o único com valor negativo no início de 2001;
- (a) (4) o saldo A foi o único com valor sempre positivo;
- (c) (5) o saldo C nos dois primeiros anos (entre 2000 e 2002) aumentou aproximadamente 3 milhões de euros;
- (b) (6) o saldo B era nulo no início de 2016;
- (a) (7) o saldo A era o que apresentava maior valor no início de 2002.



Resposta: (a) - 4,7; (b) - 1,2,6 e (c) - 3,5

mat. absolutamente. net

7.

7.1.

7.1.1. Inserindo numa lista da calculadora gráfica os valores dos "Pontos", e noutra lista os valores correspondentes do "N.º de clientes" como as respetivas frequências absolutas simples, temos:

Pontos	N.º de clientes
Pontos	Freq. absoluta simples
0	0
1	34
2	25
3	9
4	0
5	22
6	30
7	124
8	170
9	369
10	297

Calculando as medidas estatísticas referentes à primeira lista, usando a segunda como frequência, obtemos o valor da média:

$$\overline{x} \approx 8,26$$

Para uma classificação do grau de satisfação na "Zona de excelência", o valor da média das pontuações deveria ser igual ou superior a 9 pontos, o que não acontece, usando este indicador.

Calculando o NPS, temos:

- total de Promotores: 369 + 297 = 666
- total de Detratores: 0 + 34 + 25 + 9 + 0 + 22 + 30 = 120• percentagem de Promotores: $\frac{p}{666} = \frac{100}{1080} \Leftrightarrow p = \frac{100 \times 666}{1080} \Rightarrow p \approx 61,67\%$ percentagem de Detratores: $\frac{p}{120} = \frac{100}{1080} \Leftrightarrow p = \frac{100 \times 120}{1080} \Rightarrow p \approx 11,11\%$
- NPS = 61,67 11,11 = 50,56%

De acordo com a tabela, o valor do NPS (50 a 74) corresponde a uma classificação do grau de satisfação na "Zona de qualidade" e não na "Zona de excelência", de acordo com este indicador.

- 7.1.2. Observando os dados da tabela anterior e o valor da mediana obtida com recurso à calculadora gráfica, temos:
 - \bullet Moda das pontuações dos Detratores: $\hat{x}=1$
 - Percentagem de clientes Neutros: $\frac{n}{124+170} = \frac{100}{1080} \Leftrightarrow n = \frac{100 \times 294}{1080} \Rightarrow n \approx 27\%$
 - \bullet Mediana das pontuações dos 1080 clientes: $\tilde{x}=9$
 - Amplitude do setor circular relativo aos Promotores (666 num total de 1080):

$$\frac{s}{666} = \frac{360}{1080} \iff s = \frac{360 \times 666}{1080} \iff s = 222^{\circ}$$

E assim, vem que:

A moda das pontuações atribuídas pelos Detratores é <u>1</u>.

Os clientes Neutros representam, com arredondamento às unidades, aproximadamente $\underline{\ \ }$ da amostra.

A mediana das pontuações atribuídas pelos 1080 clientes é <u>9</u>.

Os resultados obtidos estão organizados no gráfico circular <u>222</u>, no qual se apresenta a amplitude, em graus, de um dos sectores.

Logo, as correspondências corretas são:

- $I \rightarrow a$)
- II \rightarrow c)
- III \rightarrow b)
- IV \rightarrow c)
- 7.2. Como os 723 clientes Promotores correspondem a $\frac{723 \times 100}{1000} = 72,3\%$ do total da amostra, podemos determinar o valor do NPS desta amostra:

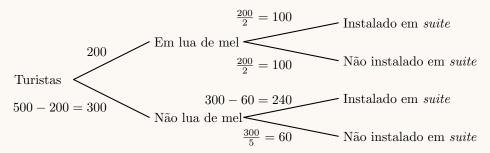
$$NPS = 72.3 - 8 = 64.3\%$$

Para que a amostra permitisse classificar a empresa na Zona de excelência, este valor deveria ser, pelo menos, 75%, ou seja, seria necessário uma percentagem adicional de Promotores de 75-64,3=10,7%, a que corresponde o número mínimo de clientes Neutros, que teriam de passar a Promotores, de:

$$1000 \times \frac{10.7}{100} = 1000 \times 0.107 = 107$$

8.

8.1. Esquematizando os valores conhecidos num diagrama em árvore, temos:



Assim, temos que:

- total de turistas que estão instalados numa suite: 100 + 240 = 340
- turistas instalados em suite que não estão em lua de mel: 240

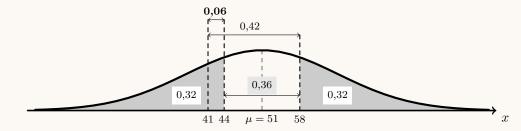
Logo, calculando a probabilidade de o formulário escolhido pertencer a um turista que não está em lua de mel, sabendo-se que está instalado numa suite, e escrevendo o resultado na forma de fração irredutível, vem:

$$\frac{240}{340} = \frac{12}{17}$$

8.2. Considerando a variável aleatória X como a idade dos turistas a que preencheram os formulários da amostra, temos que $\mu = 51$.

Assim, como a distribuição normal é simétrica em relação ao valor médio, e 44 e 51 são valores equidistantes do valor médio, temos que:

- $P(X \ge 58) = P(X \le 44) = 0.32$
- $P(44 \le X \le 58) = 1 P(X \le 44) P(X \ge 58) = 1 0.32 0.32 = 0.36$
- $P(41 \le X \le 44) = P(41 \le X \le 44) P(44 \le X \le 58) = 0.42 0.36 = 0.06$



Logo, dos 500 turistas cujos formulários foram analisados, espera-se que tenham uma idade compreendida entre 41 e 44 anos, 6%, ou seja:

$$500 \times 0.06 = 30$$

9. Inserindo numa lista da calculadora gráfica os valores relativos à marca de classe de cada uma das classes do histograma, e noutra lista os valores correspondentes às respetivas frequências absolutas absolutas simples, temos:

Marca de classe	Freq. absoluta simples	
15	28	
25	36	
35	77	
45	89	
55	26	

Calculando as medidas estatísticas referentes à primeira lista, usando a segunda como frequência, obtemos o valor da média e do desvio padrão da amostra, arredondados às décimas:

$$\overline{x} \approx 36.9 \text{ e } s \approx 11.4$$

Como a amostra tem dimensão superior a 30, podemos determinar o intervalo de confiança, considerando ainda:

- $\bullet\,$ A dimensão da amostra: $n=256\,$
- O valor de z para um nível de confiança de 95%: z=1,960

Assim, calculando os valores dos extremos do intervalo de confiança para o tempo necessário para o embarque $\left(\left. \left| \overline{x} - z \frac{s}{\sqrt{n}} \right|, \overline{x} + z \frac{s}{\sqrt{n}} \right| \right)$, e arredondando os valores às décimas, temos:

$$\left]36,9-1,960\times\frac{11,4}{\sqrt{256}}\,;\,36,9+1,960\times\frac{11,4}{\sqrt{256}}\right[\approx]35,5\,;\,38,3[$$