

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9º Ano

Teste de Avaliação — 9° A — 26/10/2016

Proposta de Resolução

Parte I

1. Acontecimento C: Retirar do saco uma bola castanha

$$\begin{split} \#C &= 3 & \#\Omega = 20 \\ P(C) &= \frac{\#C}{\#\Omega} = \frac{3}{20} \end{split}$$

$$\frac{3}{20} = 0.15 = 15\%$$

Resposta: Opção (B)

2.

2.1. Se as classes têm amplitude 10 e o limite inferior da primeira classe é 50 e o valor máximo registado é 96, então as classes serão: [50,60[; [60,70[; [70,80[; [80,90[; [90,100[

Classes	Frequência Absoluta
[50,60[2
[60,70[4
[70,80[4
[80,90[2
[90,100[2
Total	14

2.2. A classe [75,80] teria 2 de frequência absoluta, logo, $2/14 \approx 0.14$ de frequência relativa (a frequência relativa calcula-se pelo quociente da frequência absoluta, neste caso 2, pelo total de registos, neste caso 14).

Resposta: Opção (B)

3.

$$\frac{34}{250} = \frac{x}{15} \Leftrightarrow x = \frac{15 \times 34}{250} \Leftrightarrow x = \frac{510}{250} \Leftrightarrow x = 2{,}04$$

$$2,04 \approx 2$$

Resposta: A Joana terá razão.

Parte II

- 4. a) Variável qualitativa, pois não podemos contar nem medir
 - b) Variável quantitativa contínua, pois medimos
 - c) Variável quantitativa discreta, pois contamos
- 5. Se agruparmos os dados da tabela em classes de amplitude 20 e registarmos a sua frequência absoluta:

Classes	Frequência Absoluta
[0,20[3
[20,40[5
[40,60[3
[60,80[2
[80,100[0
Total	13

A diferença desta tabela para o gráfico é o número de alunos (existe mais um no gráfico, o Joaquim) e mais um registo na classe [40,60[, no gráfico. Assim, podemos afirmar que o Joaquim tinha entre 40% e 60% de bateria no seu telemóvel.

6.

6.1. Acontecimento Q: O elemento escolhido ter 15 anos

$$\begin{split} \#Q &= 10 & \#\Omega = 22 \\ P(Q) &= \frac{\#Q}{\#\Omega} = \frac{10}{22} = \frac{5}{11} \end{split}$$

Resposta: A probabilidade de ser escolhido um elemento da turma com 15 anos é de $\frac{5}{11}$

6.2. Acontecimento R: O elemento selecionado ter 15 anos

$$\#R = 6$$
 $\#\Omega = 2 + 6 + 6 = 14$ $P(R) = \frac{\#R}{\#\Omega} = \frac{6}{14} = \frac{3}{7}$

Resposta: A probabilidade de o elemento selecionado ter 15 anos é de $\frac{3}{7}$

7. Usando uma tabela de dupla entrada:

+	0,5	1	2
0,5	1	1,5	2,5
1	1,5	2	3
2	2,5	3	-

Resposta: Opção (B)

8. Acontecimento D: Sair um número superior a 10 $P(D)\!=65\%$

$$P(\overline{D}) = 100-65 = 35\%$$

9.

9.1. Usando uma tabela de dupla entrada:

	1	2	3	4
3	(1,3)	(2,3)	(3,3)	(4,3)
4	(1,4)	(2,4)	(3,4)	(4,4)
5	(1,5)	(2,5)	(3,5)	(4,5)
6	(1,6)	(2,6)	(3,6)	(4,6)
7	(1,7)	(2,7)	(3,7)	(4,7)

Acontecimento M: O número da bola e do cartão retirados é igual

$$\begin{split} \#M &= 2 \\ P(M) &= \frac{\#M}{\#\Omega} = \frac{2}{20} = \frac{1}{10} \end{split}$$

9.2. Usando uma tabela de dupla entrada:

	1	2	3	4
1	-	12	13	14
2	21	-	23	24
3	31	32	-	34
4	41	42	43	-

Resposta: Podem ser formados 12 números diferentes nestas condições.

10. Não, não são contrários, são apenas incompatíveis.

Por exemplo, dois dos dados podem ter faces com número igual de pintas e o outro ter um número diferente. Assim, a reunião dos dois acontecimentos não tem probabilidade 1 e eles não são contrários.

- 11. Analisando opção a opção:
 - Opção (A): $P(C \cup D) = P(C) + P(D)$ é verdadeira, pois os acontecimentos são incompatíveis
 - Opção (B): $P(C \cap D) = 0$ é verdadeira, pois os acontecimentos são incompatíveis
 - Opção (C): P(C) + P(D) = 1 'e falsa, pois os acontecimentos não são contrários
 - Opção (D): $P(C \cup D) < 1 \text{ \'e verdadeira, pois os acontecimentos não são contrários}$

Resposta: Opção (C)